Institut de Physique Théorique Philippe Meyer


Accueil > Recherche > Publications

Liste des publications

[1] P. Agarwal, A. Amariti, A. Mariotti and M. Siani : BPS states and their reduc-
tions, JHEP 1308, 011 (2013), arXiv:1211.2808 [hep-th].
[2] P. Agarwal, A. Amariti and A. Mariotti : A Zig-Zag Index, arXiv:1304.6733
[hep-th].
[3] A. Amariti and D. Forcella : Scattering Amplitudes and Toric Geometry, JHEP
1309, 133 (2013), arXiv:1305.5252 [hep-th].
[4] A. Amariti : A note on 3D N = 2 dualities : real mass flow and partition function,
JHEP 1403, 064 (2014), arXiv:1309.6434 [hep-th].
[5] A. Amariti and D. Forcella : Spin(7) duality for N = 1 CS-matter theories,
JHEP 1407, 082 (2014), arXiv:1404.4052 [hep-th].
[6] A. Amariti and C. Klare : Chern-Simons and RG Flows : Contact with Dualities,
JHEP 1408, 144 (2014), arXiv:1405.2312 [hep-th].
[7] A. Amariti, C. Klare : A journey to 3d : exact relations for adjoint SQCD from
dimensional reduction arXiv:1409.8623 [hep-th].
[8] Antonio Amariti, Davide Forcella, Claudius Klare, Domenico Orlando, Su-
sanne Reffert : The braneology of 3D dualities, arXiv:1501.06571 [hep-th].
[9] Domenico Orlando : A stringy perspective on the quantum integrable model /
gauge correspondence, arXiv:1310.0031 [hep-th].
[10] Neil Lambert, Domenico Orlando, Susanne Reffert : Alpha- and Omega-
Deformations from fluxes in M-Theory, JHEP 1411 (2014) 162.
[11] Domenico Orlando, Susanne Reffert : Deformed supersymmetric gauge theories
from the fluxtrap background, Int.J.Mod.Phys. A28 (2013) 1330044.
[12] T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis and K. Tuominen : Quantum
and stringy corrections to the equation of state of holographic QCD matter and
the nature of the chiral transition, arXiv:1501.06379 [hep-ph].
[13] M. Järvinen : Massive holographic QCD in the Veneziano limit,
arXiv:1501.07272 [hep-ph].
[14] U. Gursoy, M. Järvinen and G. Policastro, Late time behavior of non-conformal
plasmas, JHEP 1601, 134 (2016) [arXiv:1507.08628 [hep-th]].
[15] D. Arean, I. Iatrakis, M. Järvinen and E. Kiritsis, The CP-odd sector and θ
dynamics in holographic QCD, arXiv:1609.08922 [hep-ph].
[16] Denis Bashkirov : Quantum Field Theory, Causal structures and Weyl trans-
formations, arXiv:1601.06304 [hep-th].
[17] Andrea De Luca, Jacopo Viti, Denis Bernard, and Benjamin Doyon : Nonequi-
librium thermal transport in the quantum Ising chain, Phys. Rev. B, 88:134301,
2013.
[18] A. De Luca, A. Scardicchio, V. E. Kravtsov, and B. L. Altshuler : Anderson
localization on the Bethe lattice : non-ergodicity of extended states, Phys. Rev.
Lett. 113, 046806, 2014, arXiv:1403.7817.
[19] A. De Luca, A. Scardicchio, V. E. Kravtsov, and B. L. Altshuler : Support set
of random wave-functions on the Bethe lattice, arXiv:1401.0019.
[20] Andrea De Luca : Quenching the magnetic flux in 1d fermionic ring : Loschmidt
echo and edge singularity, Phys. Rev. B, 90:081403, 2014, arXiv:1310.6652.
[21] Andrea De Luca and Fabio Franchini : Approaching the restricted solid-on-solid
critical points through entanglement : One model for many universalities, Physical
Review B, 87(4):045118, 2013.
[22] G. Akemann, D. Villamaina, P. Vivo : A singular-potential random matrix
model arising in mean-field glassy systems, Phys. Rev. E 89, 062146 (2014).
[23] D. Villamaina, E. Trizac : Thinking outside the box : fluctuations and finite size
effects, Eur. J. Phys. 35.3 : 035011 (2014).
[24] L. Cerino, G. Gradenigo, A. Sarracino, D. Villamaina, A. Vulpiani : Fluctua-
tions in partitioning systems with few degrees of freedom, Phys. Rev. E 89, 042105
(2014).
[25] A. Sarracino, D. Villamaina : Large deviations of Brownian motors Chapter in :
Large deviations in physics. Series : Lecture Notes in Physics, Springer (2014).
[26] M. Barbier, D. Villamaina, E. Trizac : Blast dynamics in a dissipative gas, (in
preparation).
[27] R. Monasson, D. Villamaina : Estimating the principal component of correlation
matrices from all their eigenmodes, (in preparation).
[28] C.K. Fisher, P. Mehta : Bayesian Feature Selection with Strong Priors Maps to
the Ising Model, arXiv : 1411.0591.
[29] A.H. Lang, C.K. Fisher, T Mora, P Mehta : Thermodynamics of statistical
inference by cells, Physical review letters 113 (14), 148103.
[30] C.K. Fisher, T. Mora, A.M. Walczak : Habitat Fluctuations Drive Species Co-
variation in the Human Microbiota, arXiv:1510.00198.
[31] B. Derrida and T. Sadhu : Large deviation function of a tracer position in single
file diffusion, J Stat Mech P09008 (2015).
[32] P. L. Krapivsky, K. Mallick and T. Sadhu, Dynamical properties of single-file
diffusion, J Stat Mech P09007 (2015).
[33] P. L. Krapivsky, K. Mallick and T. Sadhu, Tagged particle in single-file diffusion,
J Stat Phys 160, 885 (2015).
[34] T. Sadhu and B. Derrida, Correlations of the density and of the current in
non-equilibrium diffusive systems, J Stat Mech, accepted for publication, (2016).
[35] A. Kaviraj and M. F. Paulos, “The Functional Bootstrap for Boundary CFT,” arXiv:1812.04034 [hep-th]
[36] P. Dey and A. Kaviraj, “Towards a Bootstrap approach to higher orders of epsilon expansion,” JHEP 1802, 153 (2018) [arXiv:1711.01173 [hep-th]]
[37] E. DeGiuli and M. Wyart. Friction law and hysteresis in granular materials. Proceedings of the National Academy of Sciences, 114(35):9284–9289, 2017.
[38] E. DeGiuli. Field theory for amorphous solids. Physical review letters, 121(11):118001, 2018.
[39] E. DeGiuli. Edwards field theory for glasses and granular matter. Phys. Rev. E, 98:033001, 2018.
[40] E. DeGiuli. Random language model. arXiv preprint arXiv:1809.01201, 2018
[41] J. Gomis and B. Le Floch, “’t Hooft operators in gauge theory from
Toda CFT,” JHEP 11 (2011) 114, arXiv:1008.4139 [hep-th].
[42] N. Doroud, J. Gomis, B. Le Floch, and S. Lee, “Exact results in D=2
supersymmetric gauge theories,” JHEP 05 (2013) 093, arXiv:1206.2606
[hep-th].
[43] J. Gomis and B. Le Floch, “M2-brane surface operators and gauge
theory dualities in Toda,” JHEP 04 (2016) 183, arXiv:1407.1852 [hep-th].
[44] B. Le Floch, “S-duality wall of SQCD from Toda braiding,”
arXiv:1512.09128 [hep-th].
[45] F. Benini and B. Le Floch, “Supersymmetric localization in two
dimensions,” J. Phys. A50 no. 44, (2017) 443003, arXiv:1608.02955 [hep-th].
[46] J. Gomis, B. Le Floch, Y. Pan, and W. Peelaers, “Intersecting
surface defects and two-dimensional CFT,” Phys. Rev. D96 no. 4, (2017)
045003, arXiv:1610.03501 [hep-th].
[47] A. Gorsky, B. Le Floch, A. Milekhin, and N. Sopenko, “Surface
defects and instanton–vortex interaction,” Nucl. Phys. B920 (2017)
122–156, arXiv:1702.03330 [hep-th].
[48] B. Le Floch and G. J. Turiaci, “AGT/Z_2,” JHEP 12 (2017) 099,
arXiv:1708.04631 [hep-th].
[49] B. Le Floch and P. G. LeFloch, “On the global evolution of
self-gravitating matter. Functionals for compressible fluids in Gowdy
symmetry,” Arch. Rational Mech. Anal. 231 no. 1, (2019) 1–42,
arXiv:1805.10278 [gr-qc].
[50] B. Le Floch and I. Smilga, “Action of Weyl group on zero-weight
space,” C. R. Math 356 no. 8, (2018) 852–858, arXiv:1806.00347 [math.RT].
[51] J. Clingempeel, B. Le Floch, and M. Romo, “Brane transport in
anomalous (2,2) models and localization,” arXiv:1811.12385 [hep-th].
[52] Adrian van Kan, Takahiro Nemoto, Alexandros Alexakis. Rare transitions to thin-layer turbulent condensates. arXiv:1903.05578 (2019).
[53] Itsuo Hanasaki, Takahiro Nemoto, and Yoshito Y. Tanaka. Soft trapping lasts longer : Dwell time of a Brownian particle varied by potential shape. Phys. Rev. E 99, 022119 (2019).
[54] Takahiro Nemoto, Étienne Fodor, Michael E. Cates, Robert L. Jack, Julien Tailleur. Optimizing active work : dynamical phase transitions, collective motion and jamming. Phys. Rev. E 99, 022605 (2019).
[55] Laura Tociu, Etienne Fodor, Takahiro Nemoto, Suriyanarayanan Vaikuntanathan. How can dissipation constrain fluctuations beyond equilibrium ? Diffusion, structure and biased energy flows in a driven liquid. arXiv:1808.07838 (2018).
[56] Ohad Shpielberg, Takahiro Nemoto, João Caetano. Universality in dynamical phase transitions of diffusive systems. Phys. Rev. E 98, 052116 (2018) [Editors’ Suggestion].
[57] Takahiro Nemoto and Alexandros Alexakis. Method to measure efficiently rare fluctuations of turbulence intensity for turbulent-laminar transitions in pipe flows. Phys. Rev. E 97, 022207 (2018).
[58] Esteban Guevara Hidalgo, Takahiro Nemoto, Vivien Lecomte. Finite-time and finite-size scalings in the evaluation of large-deviation functions : Numerical approach in continuous time. Phys. Rev. E 95, 062134 (2017).
[59] Takahiro Nemoto, Robert L Jack, Vivien Lecomte, Finite-size scaling of a first-order dynamical phase transition : Adaptive population dynamics and an effective model. Phys. Rev. Lett. 118, 115702 (2017).
[60] Tin Sulejmanpasic, Christof Gattringer, Abelian gauge theories on the lattice : θ-terms and compact gauge theory with(out) monopoles. Nucl.Phys. B943 (2019) 114616.
[61] Christof Gattringer, Daniel Göschl, Tin Sulejmanpasic, Dual simulation of the 2d U(1) gauge Higgs model at topological angle θ=π : Critical endpoint behavior. Nucl.Phys. B935 (2018) 344-364.
[62] Zhihao Duan, Jie Gu, Yasuyuki Hatsuda, Tin Sulejmanpasic, Instantons in the Hofstadter butterfly : difference equation, resurgence and quantum mirror curves. JHEP 1901 (2019) 079.
[63] Yuya Tanizaki, Tin Sulejmanpasic, Anomaly and global inconsistency matching : θ-angles, SU(3)/U(1) nonlinear sigma model, SU(3) chains and its generalizations. Phys.Rev. B98 (2018) no.11, 115126.
[64] Alireza Behtash, Gerald V. Dunne, Thomas Schaefer, Tin Sulejmanpasic, Mithat Ünsal, Critical Points at Infinity, Non-Gaussian Saddles, and Bions ; JHEP 1806 (2018) 068.
[65] Tin Sulejmanpasic, Yuya Tanizaki, C-P-T anomaly matching in bosonic quantum field theory and spin chains. Phys.Rev. B97 (2018) no.14, 144201.
[66] Jie Gu, Tin Sulejmanpasic, High order perturbation theory for difference equations and Borel summability of quantum mirror curves. JHEP 1712 (2017) 014.
[67] Zohar Komargodski, Tin Sulejmanpasic, Mithat Ünsal, Walls, anomalies, and deconfinement in quantum antiferromagnets. Phys.Rev. B97 (2018) no.5, 054418.
[68] Tin Sulejmanpasic, Global Symmetries, Volume Independence, and Continuity in Quantum Field Theories. Phys.Rev.Lett. 118 (2017) no.1, 011601.